XingXing Park

猩猩的乐园


  • Home

  • Archives

  • Tags

  • Job Info

  • Search

[Leetcode 1005] Maximize Sum Of Array After K Negations

Posted on 2019-03-23 | In leetcode | Comments:

原题说明

Given an array A of integers, we must modify the array in the following way: we choose an i and replace A[i] with -A[i], and we repeat this process K times in total. (We may choose the same index i multiple times.)

Return the largest possible sum of the array after modifying it in this way.

Example 1:

Input: A = [4,2,3], K = 1
Output: 5
Explanation: Choose indices (1,) and A becomes [4,-2,3].


Example 2:

Input: A = [3,-1,0,2], K = 3
Output: 6
Explanation: Choose indices (1, 2, 2) and A becomes [3,1,0,2].


Example 3:

Input: A = [2,-3,-1,5,-4], K = 2
Output: 13
Explanation: Choose indices (1, 4) and A becomes [2,3,-1,5,4].

Note:

  1. 1 <= A.length <= 10000
  2. 1 <= K <= 10000
  3. -100 <= A[i] <= 100
Read more »

[Leetcode 999] Available Captures for Rook

Posted on 2019-03-12 | In leetcode | Comments:

原题说明

On an 8 x 8 chessboard, there is one white rook. There also may be empty squares, white bishops, and black pawns. These are given as characters ‘R’, ‘.’, ‘B’, and ‘p’ respectively. Uppercase characters represent white pieces, and lowercase characters represent black pieces.

The rook moves as in the rules of Chess: it chooses one of four cardinal directions (north, east, west, and south), then moves in that direction until it chooses to stop, reaches the edge of the board, or captures an opposite colored pawn by moving to the same square it occupies. Also, rooks cannot move into the same square as other friendly bishops.

Return the number of pawns the rook can capture in one move.

Example 1:

Input:
[[".",".",".",".",".",".",".","."],
[".",".",".","p",".",".",".","."],
[".",".",".","R",".",".",".","p"],
[".",".",".",".",".",".",".","."],
[".",".",".",".",".",".",".","."],
[".",".",".","p",".",".",".","."],
[".",".",".",".",".",".",".","."],
[".",".",".",".",".",".",".","."]]
Output: 3
Explanation:
In this example the rook is able to capture all the pawns.


Example 2:

Input:
[[".",".",".",".",".",".",".","."],
[".","p","p","p","p","p",".","."],
[".","p","p","B","p","p",".","."],
[".","p","B","R","B","p",".","."],
[".","p","p","B","p","p",".","."],
[".","p","p","p","p","p",".","."],
[".",".",".",".",".",".",".","."],
[".",".",".",".",".",".",".","."]]
Output: 0
Explanation:
Bishops are blocking the rook to capture any pawn.


Example 3:

Input:
[[".",".",".",".",".",".",".","."],
[".",".",".","p",".",".",".","."],
[".",".",".","p",".",".",".","."],
["p","p",".","R",".","p","B","."],
[".",".",".",".",".",".",".","."],
[".",".",".","B",".",".",".","."],
[".",".",".","p",".",".",".","."],
[".",".",".",".",".",".",".","."]]
Output: 3
Explanation:
The rook can capture the pawns at positions b5, d6 and f5.


Note:

  1. board.length == board[i].length == 8
  2. board[i][j] is either 'R', '.', 'B', or 'p'
  3. There is exactly one cell with board[i][j] == 'R'
    Read more »

[Leetcode 1003] Check If Word Is Valid After Substitutions

Posted on 2019-03-11 | In leetcode | Comments:

原题说明

We are given that the string "abc" is valid.

From any valid string V, we may split V into two pieces X and Y such that X + Y (X concatenated with Y) is equal to V. (X or Y may be empty.) Then, X + "abc" + Y is also valid.

If for example S = "abc", then examples of valid strings are: "abc", "aabcbc", "abcabc", "abcabcababcc". Examples of invalid strings are: "abccba", "ab", "cababc", "bac".

Return true if and only if the given string S is valid.

Example 1:

Input: "aabcbc"
Output: true
Explanation:
We start with the valid string "abc".
Then we can insert another "abc" between "a" and "bc", resulting in "a" + "abc" + "bc" which is "aabcbc".

Example 2:

Input: "abcabcababcc"
Output: true
Explanation:
"abcabcabc" is valid after consecutive insertings of "abc".
Then we can insert "abc" before the last letter, resulting in "abcabcab" + "abc" + "c" which is "abcabcababcc".

Example 3:

Input: "abccba"
Output: false

Example 4:

Input: "cababc"
Output: false

Note:

  1. 1 <= S.length <= 20000
  2. S[i] is 'a', 'b', or 'c'
Read more »

[Leetcode 995] Minimum Number of K Consecutive Bit Flips

Posted on 2019-03-11 | In leetcode | Comments:

原题说明

In an array A containing only 0s and 1s, a K-bit flip consists of choosing a (contiguous) subarray of length K and simultaneously changing every 0 in the subarray to 1, and every 1 in the subarray to 0.

Return the minimum number of K-bit flips required so that there is no 0 in the array. If it is not possible, return -1.

Example 1:

Input: A = [0,1,0], K = 1
Output: 2
Explanation: Flip A[0], then flip A[2].

Example 2:

Input: A = [1,1,0], K = 2
Output: -1
Explanation: No matter how we flip subarrays of size 2, we can’t make the array become [1,1,1].

Example 3:

Input: A = [0,0,0,1,0,1,1,0], K = 3
Output: 3
Explanation:
Flip A[0],A[1],A[2]: A becomes [1,1,1,1,0,1,1,0]
Flip A[4],A[5],A[6]: A becomes [1,1,1,1,1,0,0,0]
Flip A[5],A[6],A[7]: A becomes [1,1,1,1,1,1,1,1]

Note:

  1. 1 <= A.length <= 30000
  2. 1 <= K <= A.length
    Read more »

[Leetcode 997] Find the Town Judge

Posted on 2019-03-10 | In leetcode | Comments:

原题说明

In a town, there are N people labelled from 1 to N. There is a rumor that one of these people is secretly the town judge.

If the town judge exists, then:

  1. The town judge trusts nobody.
  2. Everybody (except for the town judge) trusts the town judge.
  3. There is exactly one person that satisfies properties 1 and 2.
    You are given trust, an array of pairs trust[i] = [a, b] representing that the person labelled a trusts the person labelled b.

If the town judge exists and can be identified, return the label of the town judge. Otherwise, return -1.

Example 1:

Input: N = 2, trust = [[1,2]]
Output: 2

Example 2:

Input: N = 3, trust = [[1,3],[2,3]]
Output: 3

Example 3:

Input: N = 3, trust = [[1,3],[2,3],[3,1]]
Output: -1

Example 4:

Input: N = 3, trust = [[1,2],[2,3]]
Output: -1

Example 5:

Input: N = 4, trust = [[1,3],[1,4],[2,3],[2,4],[4,3]]
Output: 3

Note:

  1. 1 <= N <= 1000
  2. trust.length <= 10000
  3. trust[i] are all different
  4. trust[i][0] != trust[i][1]
  5. 1 <= trust[i][0], trust[i][1] <= N
    Read more »

[Leetcode 1004] Max Consecutive Ones III

Posted on 2019-03-09 | In leetcode | Comments:

原题说明

Given an array A of 0s and 1s, we may change up to K values from 0 to 1.

Return the length of the longest (contiguous) subarray that contains only 1s.

Example 1:

Input: A = [1,1,1,0,0,0,1,1,1,1,0], K = 2
Output: 6
Explanation:
[1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1]
Bolded numbers were flipped from 0 to 1. The longest subarray is underlined.

Example 2:

Input: A = [0,0,1,1,0,0,1,1,1,0,1,1,0,0,0,1,1,1,1], K = 3
Output: 10
Explanation:
[0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1]
Bolded numbers were flipped from 0 to 1. The longest subarray is underlined.

Note:

  • 1 <= A.length <= 20000
  • 0 <= K <= A.length
  • A[i] is 0 or 1
Read more »

[Leetcode 1002] Find Common Characters

Posted on 2019-03-09 | In leetcode | Comments:

原题说明

Given an array A of strings made only from lowercase letters, return a list of all characters that show up in all strings within the list (including duplicates). For example, if a character occurs 3 times in all strings but not 4 times, you need to include that character three times in the final answer.

You may return the answer in any order.

Example 1:

Input: ["bella","label","roller"]
Output: ["e","l","l"]

Example 2:

Input: ["cool","lock","cook"]
Output: ["c","o"]

Note:

  • 1 <= A.length <= 100
  • 1 <= A[i].length <= 100
  • A[i][j] is a lowercase letter
    Read more »

[Leetcode 1000] Minimum Cost to Merge Stones

Posted on 2019-03-09 | In leetcode | Comments:

原题说明

There are N piles of stones arranged in a row. The i-th pile has stones[i] stones.

A move consists of merging exactly K consecutive piles into one pile, and the cost of this move is equal to the total number of stones in these K piles.

Find the minimum cost to merge all piles of stones into one pile. If it is impossible, return -1.

Example 1:

Input: stones = [3,2,4,1], K = 2
Output: 20
Explanation:
We start with [3, 2, 4, 1].
We merge [3, 2] for a cost of 5, and we are left with [5, 4, 1].
We merge [4, 1] for a cost of 5, and we are left with [5, 5].
We merge [5, 5] for a cost of 10, and we are left with [10].
The total cost was 20, and this is the minimum possible.

Example 2:

Input: stones = [3,2,4,1], K = 3
Output: -1
Explanation: After any merge operation, there are 2 piles left, and we can’t merge anymore. So the task is impossible.

Example 3:

Input: stones = [3,5,1,2,6], K = 3
Output: 25
Explanation:
We start with [3, 5, 1, 2, 6].
We merge [5, 1, 2] for a cost of 8, and we are left with [3, 8, 6].
We merge [3, 8, 6] for a cost of 17, and we are left with [17].
The total cost was 25, and this is the minimum possible.

Note:

  • 1 <= stones.length <= 30
  • 2 <= K <= 30
  • 1 <= stones[i] <= 100
    Read more »

[Leetcode 996] Number of Squareful Arrays

Posted on 2019-03-03 | In leetcode | Comments:

原题说明

Given an array A of non-negative integers, the array is squareful if for every pair of adjacent elements, their sum is a perfect square.

Return the number of permutations of A that are squareful. Two permutations A1 and A2 differ if and only if there is some index i such that A1[i] != A2[i].

Example 1:

Input: [1,17,8]
Output: 2
Explanation:
[1,8,17] and [17,8,1] are the valid permutations.

Example 2:

Input: [2,2,2]
Output: 1

Note:

  1. 1 <= A.length <= 12
  2. 0 <= A[i] <= 1e9
    Read more »

[Leetcode 1001] Grid Illumination

Posted on 2019-03-03 | In leetcode | Comments:

原题说明

On a N x N grid of cells, each cell (x, y) with 0 <= x < N and 0 <= y < N has a lamp.

Initially, some number of lamps are on. lamps[i] tells us the location of the i-th lamp that is on. Each lamp that is on illuminates every square on its x-axis, y-axis, and both diagonals (similar to a Queen in chess).

For the i-th query queries[i] = (x, y), the answer to the query is 1 if the cell (x, y) is illuminated, else 0.

After each query (x, y) [in the order given by queries], we turn off any lamps that are at cell (x, y) or are adjacent 8-directionally (ie., share a corner or edge with cell (x, y).)

Return an array of answers. Each value answer[i] should be equal to the answer of the i-th query queries[i].

Example 1:

Input: N = 5, lamps = [[0,0],[4,4]], queries = [[1,1],[1,0]]
Output: [1,0]
Explanation:
Before performing the first query we have both lamps [0,0] and [4,4] on.
The grid representing which cells are lit looks like this, where [0,0] is the top left corner, and [4,4] is the bottom right corner:

1
2
3
4
5
1 1 1 1 1
1 1 0 0 1
1 0 1 0 1
1 0 0 1 1
1 1 1 1 1

Then the query at [1, 1] returns 1 because the cell is lit. After this query, the lamp at [0, 0] turns off, and the grid now looks like this:

1
2
3
4
5
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 1

Before performing the second query we have only the lamp [4, 4] on. Now the query at [1, 0] returns 0, because the cell is no longer lit.

Note:

  1. 1 <= N <= 10^9
  2. 0 <= lamps.length <= 20000
  3. 0 <= queries.length <= 20000
  4. lamps[i].length == queries[i].length == 2
    Read more »
1…789…13

猩猩的乐园

技术面试问题详解
123 posts
2 categories
69 tags
RSS
© 2018 – 2020 猩猩的乐园
|