原题说明
Given the edges of a directed graph, and two nodes source and destination of this graph, determine whether or not all paths starting from source eventually end at destination, that is:
- At least one path exists from the
sourcenode to thedestinationnode - If a path exists from the
sourcenode to a node with no outgoing edges, then that node is equal todestination. - The number of possible paths from
sourcetodestinationis a finite number.
Return true if and only if all roads from source lead to destination.
Example 1:

Input: n = 3, edges = [[0,1],[0,2]], source = 0, destination = 2
Output: false
Explanation: It is possible to reach and get stuck on both node 1 and node 2.
Example 2:

Input: n = 4, edges = [[0,1],[0,3],[1,2],[2,1]], source = 0, destination = 3
Output: false
Explanation: We have two possibilities: to end at node 3, or to loop over node 1 and node 2 indefinitely.
Example 3:

Input: n = 4, edges = [[0,1],[0,2],[1,3],[2,3]], source = 0, destination = 3
Output: true
Example 4:

Input: n = 3, edges = [[0,1],[1,1],[1,2]], source = 0, destination = 2
Output: false
Explanation: All paths from the source node end at the destination node, but there are an infinite number of paths, such as 0-1-2, 0-1-1-2, 0-1-1-1-2, 0-1-1-1-1-2, and so on.
Example 5:

Input: n = 2, edges = [[0,1],[1,1]], source = 0, destination = 1
Output: false
Explanation: There is infinite self-loop at destination node.
Note:
The given graph may have self loops and parallel edges. - The number of nodes
nin the graph is between1and10000 - The number of edges in the graph is between
0and10000 0 <= edges.length <= 10000edges[i].length == 20 <= source <= n - 10 <= destination <= n - 1
解题思路
使用DFS,用一个数组visited来记录以每一个节点为source,到destination应当返回的值(not visited, true, or false)。
然后要明确边界条件:
- 当遇到一个没有出度的节点,则需要判断是否该点为
destination,是的话返回true,不然则为false。 - 判断当前节点是否被访问过,如果访问过,则返回visited对应的值。
在DFS中,要首先将visited[source]记录为isFalse, 然后再开始递归,这样遇到cycle,则会返回false,不然就会返回true,那就不对了。
DFS要求source的每一个child到destination都为true,这样source到destination也为true,反之则为false。
示例代码 (cpp)
1 | class Solution { |
示例代码 (java)
1 | class Solution { |
示例代码 (python)
1 | class Solution: |
复杂度分析
时间复杂度: O(N)
空间复杂度: O(N)
归纳总结
我们在Youtube上更新了视频讲解,欢迎关注!