原题说明
On an infinite number line, the position of the i-th stone is given by stones[i]
. Call a stone an endpoint stone if it has the smallest or largest position.
Each turn, you pick up an endpoint stone and move it to an unoccupied position so that it is no longer an endpoint stone.
In particular, if the stones are at say, stones = [1,2,5]
, you cannot move the endpoint stone at position 5, since moving it to any position (such as 0, or 3) will still keep that stone as an endpoint stone.
The game ends when you cannot make any more moves, ie. the stones are in consecutive positions.
When the game ends, what is the minimum and maximum number of moves that you could have made? Return the answer as an length 2 array: answer = [minimum_moves, maximum_moves]
Example 1
Input: [7,4,9]
Output: [1,2]
Explanation: We can move 4 -> 8 for one move to finish the game.
Or, we can move 9 -> 5, 4 -> 6 for two moves to finish the game.
Example 2
Input: [6,5,4,3,10]
Output: [2,3]
Explanation: We can move 3 -> 8 then 10 -> 7 to finish the game.
Or, we can move 3 -> 7, 4 -> 8, 5 -> 9 to finish the game.
Notice we cannot move 10 -> 2 to finish the game, because that would be an illegal move.
Example 3
Input: [100,101,104,102,103]
Output: [0,0]
Note
3 <= stones.length <= 10^4
1 <= stones[i] <= 10^9
stones[i] have distinct values.
解题思路
题目要求求出让石头堆连续排列的最大和最小移动步数。我们需要将最大和最小移动步数分成两个问题考虑。将总共的石头堆的数目用n
表示。另外,我们首先需要做预处理,将给我们的array
做个排序。
对最大移动步数,用贪心的思想,要么都移动到最左端,要么都移动到最右端。我们需要考察stones[n-2]
到stones[0]
和stones[n-1]
到stones[1]
的间距,进行比较。在这两个选择中。选择空的position最多的那个。同时,因为一开始需要将一个endpoint
做一次移动,所以需要额外加上这次步骤。
对最小移动步数,用sliding window 的方法。window
的长度是n
。计算每个window中,最多已经被填满的空间数量。剩下的未被填满的空间就是最小的移动数目。
需要额外注意的是,这里存在一种corner case
违背了上述的结论,需要特殊处理。举例如下:
如果石头堆是1,2,3,6
, 那么n
是4
,对于第一个window
,它有一个空位置,在4
, 但是6
不能移动到4
,这不是一个valid move
,所以必须将1
移动到5
,6
移动到4
,必须至少2
步才能完成要求。
也就是说,当一个window
的长度是n,它包含了连续的n-1个非空位,同时这n-1个非空位在原来石头堆的位置也是连续的,那我们就需要2
步才能完成石头堆的最小移动。
示例代码 (cpp)
1 | class Solution { |
示例代码 (java)
1 | class Solution { |
示例代码 (python)
1 | class Solution: |
复杂度分析
时间复杂度: O(nlogn + n + 1) = O(nlogn)
空间复杂度: O(1)
归纳总结
我们在Youtube上更新了视频讲解,欢迎关注!