原题说明
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M. (For clarification, the L-length subarray could occur before or after the M-length subarray.)
Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either:0 <= i < i + L - 1 < j < j + M - 1 < A.length, or0 <= j < j + M - 1 < i < i + L - 1 < A.length.
Example 1:
Input:
A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
Output:20
Explanation: One choice of subarrays is[9]with length1, and[6,5]with length2.
Example 2:
Input:
A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
Output:29
Explanation: One choice of subarrays is[3,8,1]with length3, and[8,9]with length2.
Example 3:
Input:
A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
Output:31
Explanation: One choice of subarrays is[5,6,0,9]with length4, and[3,8]with length3.
Note:
L >= 1M >= 1L + M <= A.length <= 10000 <= A[i] <= 1000
解题思路
动态规划
凡是要求数组某一段的和,要想到用pre_sum,pre_sum[i]表示指数i之前左右数的和。
这样我们要求A[i]到A[j]之间所有数的和,就可以用pre_sum[j] - pre_sum[i - 1]
回到这道题,我们第一遍遍历数组A求pre_sum。
第二遍遍历,指数为i,用max_L记录指数i - M之前的最大连续L个数之和,
每次更新max_L为max(max_L, pre_sum[i - M] - pre_sum[i - L - M])max_L + pre_sum[i] - pre_sum[i - M]表示以i结尾最后连续M个数,与之前最大的连续L个数的和。
同理max_M + pre_sum[i] - pre_sum[i - L]就表示以i结尾最后连续L个数,与之前最大的连续M个数的和。
取其中较大的与最终要返回的值res比较,并更新即可。
示例代码 (cpp)
1 | class Solution { |
示例代码 (java)
1 | class Solution { |
示例代码 (python)
1 | class Solution(object): |
复杂度分析
时间复杂度: O(N)
空间复杂度: O(N)
归纳总结
我们在Youtube上更新了视频讲解,欢迎关注!