[Leetcode 1031] Maximum Sum of Two Non-Overlapping Subarrays

原题说明

Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M. (For clarification, the L-length subarray could occur before or after the M-length subarray.)

Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either:
0 <= i < i + L - 1 < j < j + M - 1 < A.length, or
0 <= j < j + M - 1 < i < i + L - 1 < A.length.

Example 1:

Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
Output: 20
Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.

Example 2:

Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
Output: 29
Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.

Example 3:

Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
Output: 31
Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.

Note:

  1. L >= 1
  2. M >= 1
  3. L + M <= A.length <= 1000
  4. 0 <= A[i] <= 1000

解题思路

动态规划
凡是要求数组某一段的和,要想到用pre_sumpre_sum[i]表示指数i之前左右数的和。
这样我们要求A[i]A[j]之间所有数的和,就可以用pre_sum[j] - pre_sum[i - 1]
回到这道题,我们第一遍遍历数组A求pre_sum。

第二遍遍历,指数为i,用max_L记录指数i - M之前的最大连续L个数之和,
每次更新max_Lmax(max_L, pre_sum[i - M] - pre_sum[i - L - M])
max_L + pre_sum[i] - pre_sum[i - M]表示以i结尾最后连续M个数,与之前最大的连续L个数的和。
同理max_M + pre_sum[i] - pre_sum[i - L]就表示以i结尾最后连续L个数,与之前最大的连续M个数的和。
取其中较大的与最终要返回的值res比较,并更新即可。

示例代码 (cpp)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int maxSumTwoNoOverlap(vector<int>& A, int L, int M) {
if (A.size() < L + M) {
return 0;
}
vector<int> pre_sum = A;
for (int i = 1; i < A.size(); ++i) {
pre_sum[i] += pre_sum[i - 1];
}
int res = pre_sum[L + M - 1], max_L = pre_sum[L - 1], max_M = pre_sum[M - 1];
for (int i = L + M; i < A.size(); ++i) {
max_L = max(max_L, pre_sum[i - M] - pre_sum[i - L - M]);
max_M = max(max_M, pre_sum[i - L] - pre_sum[i - L - M]);
res = max(res, max(max_L + pre_sum[i] - pre_sum[i - M], max_M + pre_sum[i] - pre_sum[i - L]));
}
return res;
}
};

示例代码 (java)

1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution {
public int maxSumTwoNoOverlap(int[] A, int L, int M) {
for (int i = 1; i < A.length; ++i)
A[i] += A[i - 1];
int res = A[L + M - 1], Lmax = A[L - 1], Mmax = A[M - 1];
for (int i = L + M; i < A.length; ++i) {
Lmax = Math.max(Lmax, A[i - M] - A[i - L - M]);
Mmax = Math.max(Mmax, A[i - L] - A[i - L - M]);
res = Math.max(res, Math.max(Lmax + A[i] - A[i - M], Mmax + A[i] - A[i - L]));
}
return res;
}
}

示例代码 (python)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution(object):
def maxSumTwoNoOverlap(self, A, L, M):
"""
:type A: List[int]
:type L: int
:type M: int
:rtype: int
"""
for i in xrange(1, len(A)):
A[i] += A[i - 1]
res, Lmax, Mmax = A[L + M - 1], A[L - 1], A[M - 1]
for i in xrange(L + M, len(A)):
Lmax = max(Lmax, A[i - M] - A[i - L - M])
Mmax = max(Mmax, A[i - L] - A[i - L - M])
res = max(res, Lmax + A[i] - A[i - M], Mmax + A[i] - A[i - L])
return res

复杂度分析

时间复杂度: O(N)
空间复杂度: O(N)

归纳总结

我们在Youtube上更新了视频讲解,欢迎关注!

------ 关注公众号:猩猩的乐园 ------